Classifying Pollen Using Robust Sequence Alignment of Sparse Z-Stack Volumes
نویسندگان
چکیده
The identification of pollen grains is a task needed in many scientific and industrial applications, ranging from climate research to petroleum exploration. It is also a time-consuming task. To produce data, pollen experts spend hours, sometimes months, visually counting thousands of pollen grains from hundreds of images acquired by microscopes. Most current automation of pollen identification rely on singlefocus images. While this type of image contains characteristic texture and shape, it lacks information about how these visual cues vary across the grain’s surface. In this paper, we propose a method that recognizes pollen species from stacks of multi-focal images. Here, each pollen grain is represented by a multi-focal stack. Our method matches unknown stacks to pre-learned ones using the Longest-Common Sub-Sequence (LCSS) algorithm. The matching process relies on the variations of visual texture and contour that occur along the image stack, which are captured by a low-rank and sparse decomposition technique. We tested our method on 392 image stacks from 10 species of pollen grains. The proposed method achieves a remarkable recognition rate of 99.23%.
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملA stack-based chaotic algorithm for encryption of colored images
In this paper, a new method is presented for encryption of colored images. This method is based on using stack data structure and chaos which make the image encryption algorithm more efficient and robust. In the proposed algorithm, a series of data whose range is between 0 and 3 is generated using chaotic logistic system. Then, the original image is divided into four subimages, and these four i...
متن کاملUlla: a program for calculating environment-specific amino acid substitution tables
SUMMARY Amino acid residues are under various kinds of local environmental restraints, which influence substitution patterns. Ulla,(1) a program for calculating environment-specific substitution tables, reads protein sequence alignments and local environment annotations. The program produces a substitution table for every possible combination of environment features. Sparse data is handled usin...
متن کاملLow-frequency normal modes that describe allosteric transitions in biological nanomachines are robust to sequence variations.
By representing the high-resolution crystal structures of a number of enzymes using the elastic network model, it has been shown that only a few low-frequency normal modes are needed to describe the large-scale domain movements that are triggered by ligand binding. Here we explore a link between the nearly invariant nature of the modes that describe functional dynamics at the mesoscopic level a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016